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Abstract
We determine the one-particle spectral function and the corresponding derived quantities for the
conducting chain lattice with finite inter-chain hopping t⊥ and three-dimensional long-range
Coulomb electron–electron interaction. The standard G0W0 approximation is used. It is shown
that, due to the optical character of the anisotropic plasmon dispersion caused by the finite t⊥, a
low energy quasi-particle δ-peak appears in the spectral function in addition to the hump
present at energies of the order of the plasmon energy. Particular attention is devoted to the
continuous crossover from the non-Fermi liquid regime to the Fermi liquid regime with
increasing t⊥. It is shown that the spectral weight of the hump transfers to the quasi-particle as
the optical gap in the plasmon dispersion increases together with t⊥, with the quasi-particle
residuum Z behaving like −(ln t⊥)−1 in the limit t⊥ → 0. Our approach is appropriate for the
wide range of energy scales given by the plasmon energy and the width of the conduction band,
and is complementary to the Luttinger liquid techniques that are limited to the low energy
regime close to the Fermi surface.

1. Introduction

Recent ARPES measurements of photoemission spectra
show that a series of quasi-one-dimensional conductors,
in particular the acceptor–donor chain compound TTF-
TCNQ [1, 2] and Bechgaard salts (TMTSF)2X with X =
PF6, ClO4, ReO4, . . . [3–5], have unusual properties, clearly
distinguishable from those of the spectra of standard three-
dimensional conductors. Quasi-particle peaks are absent
for these compounds, and the spectra are instead dominated
by a wide feature spread across energy scales of the order
of the plasmon energies. Such data are in qualitative
accordance with the conclusions of our recent calculation [6]
for the spectral function of the one-dimensional electron
band with three-dimensional long-range Coulomb electron–
electron interaction, obtained within the so-called G0W0

approximation [7]. The physical origin of such behavior is
the one-dimensionality of the electron band that causes an
anisotropic acoustic plasmon dispersion. Since such dispersion

spreads through the whole range of energies, from zero up to
the plasmon energy �pl, it introduces the wide feature into the
spectral function at these energies, leaving thus no space for
the creation of quasi-particle δ-peaks.

The spectral density N(ω) and other quantities related
to the electron spectral properties have also been calculated
exactly within the Luttinger liquid approach, using mostly
the bosonization method [8, 9]. Such analyses are however
limited to the narrow range of low energies ω � EF,�pl,
where EF is the Fermi energy of the order of bandwidth. It
was shown that the spectral function shows, together with the
absence of quasi-particle peaks, power-law behavior with the
anomalous dimension α, defined by N(ω) ∼ |ω|α [8, 9] and
interaction dependent. The comparison with measurements at
low frequencies suggests values of anomalous dimension in
the range α > 1. This corresponds to the regime of strong
three-dimensional long-range Coulomb interactions [10–14],
which additionally suggests that the corresponding plasmon
energy scale is not small, being at least of the order of the
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bandwidth or larger. The G0W0 approximation is the only
known approach which, as was already pointed out, enables
the calculation of spectral properties over such wide ranges.
However, it does not lead to the correct power-law exponent in
the limit ω → 0. Hence, it is complementary to the Luttinger
liquid approach [8, 9] which is concentrated on and limited to
the low energy region.

The combination of the above two approaches thus covers
the whole energy range relevant for the analysis of the
photoemission properties of quasi-one-dimensional metals. As
was already stated, the main emerging conclusion for the
electron liquid with a strictly one-dimensional band dispersion
is that, although three-dimensionally coupled through long-
range Coulomb interaction, it does not show the essential
property of Fermi liquids, namely the presence of quasi-
particle excitations in the one-particle spectral properties.
However in order to understand better the spectral properties
of real quasi-one-dimensional conductors one has to take into
account deviations from the one-dimensional band dispersion
which come from finite inter-chain electron tunnelings. The
corresponding question of both theoretical and experimental
interest is that of how one re-establishes the Fermi liquid
character of spectral properties by introducing and gradually
increasing the transverse bandwidth t⊥, approaching thus the
regime of the standard isotropic three-dimensional conducting
band.

In this work we address this question by extending
our earlier G0W0 approach to the rectangular lattice of
parallel chains with a finite transverse tunneling integral t⊥.
After taking into account the corresponding finite transverse
curvature in the three-dimensional band dispersion [15, 16],
the screened Coulomb interaction W0 calculated within the
random phase approximation (RPA) shows a finite optical
plasmon gap proportional to t⊥ in the long-wavelength limit.
The plasmon dispersion thus has a three-dimensional, albeit
strongly anisotropic, character for any finite value of t⊥. A
more detailed insight into the electron self-energy within the
G0W0 approach shows that this property of plasmon dispersion
has the dominant effect on the dressed electron propagator
through the screened Coulomb interaction W0, while the
influence of finite t⊥ through a bare electron propagator G0

can be neglected. This enables an analytical derivation of
the dressed electron Green’s function and other quantities that
follow from it.

The result obtained reveals the appearance of low energy
quasi-particle peaks, in addition to the smeared structure at
higher energies which is a characteristic of the strictly one-
dimensional (t⊥ = 0) limit [6]. Note that the early G0W0

approach to the isotropic three-dimensional ‘jellium’ [17–19]
led to an analogous result for the spectral function, showing
quasi-particle peaks in the energy range μ − �pl < ω <

μ + �pl where �pl is the minimum of the optical long-
wavelength plasmon dispersion, and an additional structure
due to the plasmon mode, with the finite spectral weight below
and above these energies.

The spectral properties for the generalized Luttinger
liquid with a weak electron tunneling between metallic chains
and with the three-dimensional electron–electron Coulomb

interaction were analyzed by using the appropriately developed
higher dimensional bosonization technique [13, 14] in which
the Fermi surface is approximated by a finite number of flat
patches. This technique inherits in itself two approximations,
namely the momentum transfer between different patches is
ignored and the local band dispersion is linearized. On the
other hand, it handles the case of t⊥ �= 0 without having
to rely on an expansion in powers of t⊥ used in earlier
studies of the model of parallel chains with a finite inter-chain
hopping [20–24]. Using the four-patch approximation for the
Fermi surface Kopietz et al [13, 14] obtained in the strong
coupling limit the spectral function with the low energy quasi-
particle having a weight proportional to �γcb , � = |t⊥|/EF.
Here γcb is the anomalous dimension of the corresponding
Luttinger liquid for t⊥ = 0, and EF is the Fermi energy.
Furthermore, it is shown that there exists a large intermediate
regime of wavevectors and frequencies where the Green’s
function satisfies the same anomalous scaling behavior as for
t⊥ = 0. This is to be contrasted with the result of the
perturbation treatment of t⊥ [20] in which the quasi-particle
peak appears only when the one-dimensional Green’s function
diverges, i.e. for the anomalous dimension less than unity.

Again, like in the case t⊥ = 0, the higher dimensional
bosonization and our G0W0 approach are complementary,
since the former is limited to the scaling behavior of the
Green’s function in the low energy range and the latter enables
the reliable calculation of the wide maximum for the range
of plasmon energy in the spectral function. It is important to
note that the essential ingredient in both approaches is that the
finite t⊥ enters into calculations through the long-wavelength
optical gap in the plasmon dispersion, and not through the
corrugation of the band dispersion at the Fermi energy as in
the perturbation approach of [20]. On the other hand, while
both Wen’s expansion in terms of t⊥ [20] and the higher
dimensional bosonization treatment cover low energy scaling,
only the present G0W0 approach describes appropriately the
crossover from the one-dimensional non-Fermi liquid regime
to the three-dimensional Fermi liquid one for the whole range
of energies.

In section 2 we calculate the electron Green’s function
within the G0W0 method developed in our previous work [6].
Section 3 is devoted to the spectral function. The density and
the momentum distribution function are discussed in section 4.
Section 5 contains concluding remarks.

2. Green’s function

2.1. Dielectric function and excitations

We begin by considering the effect of finite transverse
bandwidth on the plasmon dispersion. The electron band
dispersion is modeled by

E(k) = −2t0(cos k‖b−cos kFb)−2t⊥(cos kxa+cos kzc), (1)

where b and a, c are longitudinal and two transverse lattice
constants respectively, while t0 and t⊥ are corresponding
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transfer integrals. The RPA polarization diagram now
reads

�(q, ω) = 4

Na Nb Nc

×
π
a∑

kx =− π
a

π
b∑

k‖=− π
b

π
c∑

kz=− π
c

n(k)[E(k + q) − E(k)]
(ω + iη sgn ω)2 − [E(k + q) − E(k)]2

,

(2)

where

n(k) =
{

1, E(k) < EF

0, E(k) > EF
(3)

is the occupation function. In the long-wavelength limit q →
0, where ω � E(k + q) − E(k), the polarization diagram
reduces to [25]

�(q, ω) = 2

Na Nb Nc(ω + iη sgn ω)2

×
π
a∑

kx =− π
a

π
b∑

k‖=− π
b

π
c∑

kz=− π
c

n(k)(q · ∇k)
2 E(k) (4)

with

(q ·∇k)
2 E(k) = q2

x

∂2 E(k)

∂k2
x

+ q2
‖
∂2 E(k)

∂k2
‖

+ q2
z

∂2 E(k)

∂k2
z

. (5)

Since by assumption t⊥ � t0, the Fermi surface is only
slightly corrugated, i.e. δ(kx, kz)/kF � 1, where δ(kx, kz) is
the deviation of the component of the Fermi wavevector in the
chain direction from kF, the latter being its value at t⊥ = 0.
The expansion of the band dispersion (1) in terms of δ up to the
second order [15] leads to the equation for the Fermi surface

E(kx, kF + δ, kz) ≡ vFδ + E ′′
Fδ2/2 − 2t⊥(cos kxa + cos kzc)

= EF (6)

where vF = 2t0b sin kFb is the Fermi velocity, E ′′
F ≡

∂2 E(k)/∂k2
‖ at k‖ = kF, and EF is the shift of the Fermi energy

with respect to its value for t⊥ = 0. Our aim is to find out how
δ(kx, kz) depends on t⊥, and to determine the corresponding
value of EF. To this end we note that on switching to finite t⊥
the band filling does not change, so

∫ π/a

−π/a

∫ π/c

−π/c
δ(kx , kz) dkx dkz = 0. (7)

Then, since δ ∼ t⊥ to the lowest order, the integration of
equation (6) in terms of kx and kz gives EF ∼ t2

⊥. The explicit
expansions follow after expressing δ(kx, kz) from equation (6),

δ(kx, kz) = − vF

E ′′
F

×
{

1 ±
√

1 − 2
E ′′

F

v2
F

[−EF − 2t⊥(cos kxa + cos kzc)]
}

≈ 2t⊥
vF

(cos kx a + cos kzc) + EF

vF

− 2
E ′′

F

v3
F

t2
⊥(cos kx a + cos kzc)2. (8)

Figure 1. Plasmon dispersion ω(q) (see equation (15)).

Inserting this expression into the condition (7) one gets EF =
2E ′′

F t2
⊥/v2

F, and finally

δ(kx, kz) = 2t⊥
vF

(cos kxa + cos kzc) + 2
E ′′

F

v3
F

t2
⊥

− 2
E ′′

F

v3
F

t2
⊥(cos kx a + cos kzc)

2. (9)

The expansion (9) enables the analytical derivation of the
dielectric function εm(q, ω) = 1 − V (q)�(q, ω), where
V (q) = 4πe2

v0q2 is the bare Coulomb interaction. After replacing

π
a∑

kx =− π
a

π
b∑

k‖=− π
b

π
c∑

kz=− π
c

n(k) · · · →
(

L

2π

)3

×
∫ π

a

− π
a

dkx

∫ π
c

− π
c

dkz

∫ kF+δ

−(kF+δ)

dk‖ · · · (10)

in equation (4), and taking into account that
∫ kF+δ

−(kF+δ)

dk‖
∂2 E(k)

∂k2
‖

= 2
∂ E(k)

∂k‖

∣∣∣∣
kF+δ

0

= 2(vF + E ′′
Fδ + E ′′′

F δ2/2) (11)

and

∂2 E(k)

∂k2
x

= 2t⊥a2 cos kxa,
∂2 E(k)

∂k2
z

= 2t⊥c2 cos kzc,

(12)
we get

εm(q, ω) = 1 − ω2(q)

(ω + iη sgn ω)2
(13)

with the plasmon dispersion given by

ω2(q) = �2
plq

2
‖ + ω2

paq2
x + ω2

pcq2
z

q2
. (14)

Here longitudinal and transverse plasmon frequencies are

given by �2
pl = 8e2vF

ac (1 + 2 E ′′′
F

v2
F

t2
⊥) and ω2

pa = 16e2t2
⊥a

cvF
,

ω2
pc = 16e2t2

⊥c
avF

respectively. Thus, the finiteness of the
transverse bandwidth retains the optical character of the
plasmon dispersion in all directions of the long-wavelength
range q → 0, with the anisotropy scaled by the ratio t⊥

t0
as

shown in figure 1. As long as t⊥ � t0 we can skip the

3



J. Phys.: Condens. Matter 20 (2008) 325239 Ž Bonačić Lošić et al

correction proportional to t2
⊥ in �2

pl. Also, for simplicity we
put a = c and get the simplified expression for the long-
wavelength plasmon dispersion,

ω2(q) = �2
plq

2
‖ + ω2

plq
2
⊥

q2
, (15)

with ω2
pl = 16e2t2

⊥
vF

and q2
⊥ ≡ q2

x + q2
z . Note that in the regime

of strong Coulomb interaction, �pl � t0 [6], we also have

ωpl

t⊥
=

√
ac

2b2

�pl

t0 sin(kFb)
� 1. (16)

2.2. Green’s function

In the calculation of the reciprocal Green’s function
G−1(k, ω), we follow the G0W0 approximation [6]. The
extension of this procedure obtained by the inclusion of the
full q dependence in the band dispersion (1) leads to the
generalization of the equation (20) in [6],

G−1(k, ω) = ω − E(k) + iη[1 − 2n(k)] − Eex(k)

− 1

2N

∑

q

V (q)ω(q)

[
1 − n(k + q)

ω − μ − ω(q) − E(k + q) + iη

+ n(k + q)

ω − μ + ω(q) − E(k + q) − iη

]
. (17)

Here

Eex(k) = − 1

N

∑

q

V (q)n(k + q) (18)

is the exchange energy per elementary cell for the one-particle
state with the wavevector k. Further simplification follows
after noticing that, as long as we are in the regime of strong
Coulomb interaction, �pl � t0 (see [6] and equation (16)),
two second terms in the dispersion E(k + q) ≈ E0(k‖) +
vFq‖ + E⊥(ka + qa, kc + qc) appearing in the denominators
of equation (17) can be neglected with respect to that of
the plasmon dispersion ω(q). As will be seen later, this
approximation introduces small losses in the spectral density
at low frequencies, but does not affect its main qualitative
features. After a few nonessential simplifications which do not
affect the physical content, like taking the flat Fermi surface at
|k‖| = kF for the occupation function (3) and using cylindrical
coordinates in the integration across the first Brillouin zone [6],
one gets the analytical expression for G−1(k, ω). Its real part
reads

Re G−1(k, ω) = ω − E(k) + e2

2b

{
ln

[(
bQ⊥
π

)2

+ 1

]

+ 2bQ⊥
π

arctan
π

bQ⊥

}
− e2

2π

⎧
⎪⎪⎨

⎪⎪⎩

(ω − μ − E0(k‖))ωpl

(ω − μ − E0(k‖))2 − ω2
pl

×2π

b

⎡

⎣ln
ωpl

ωpl + �pl
+ ln

∣∣∣∣∣∣

√

1 +
(

bQ⊥
π

)2

+
√√√√�2

pl

ω2
pl

+
(

bQ⊥
π

)2
∣∣∣∣∣∣

⎤

⎦ + (ω − μ − E0(k‖))2

(ω − μ − E0(k‖))2 − ω2
pl

×

⎡

⎢⎢⎣F

(
π

b
, ω − μ

)
− R(k‖, ω − μ) + 2π

b

× ln

∣∣∣∣∣∣∣∣

(ω−μ−E0(k‖))
√

1+(bQ⊥
π

)2−ωpl

√
�2

pl

ω2
pl
+( bQ⊥

π

)2

ω − μ − E0(k‖) − �pl

∣∣∣∣∣∣∣∣

⎤

⎥⎥⎦

+ Q⊥
(ω − μ − E0(k‖))�2

pl

ωpl((ω − μ − E0(k‖))2 − �2
pl)

×
∫ π

bQ⊥

− π
bQ⊥

dy
√

y2 + 1

√
�2

pl

ω2
pl

y2 + 1

+ Q⊥
(ω − μ − E0(k‖))3(ω2

pl − �2
pl)

ωpl((ω − μ − E0(k‖))2 − �2
pl)

2

×
∫ π

bQ⊥

− π
bQ⊥

dy
√

y2 + 1

√
�2

pl

ω2
pl

y2 + 1
[

y2 + (ω−μ−E0(k‖))2−ω2
pl

(ω−μ−E0(k‖))2−�2
pl

]

⎫
⎪⎪⎬

⎪⎪⎭

(19)

with functions R and F given by the expressions

R(k‖, ω) =
[

R1(kF − |k‖|, ω) + R1(kF + |k‖|, ω)

]

× �

(
π

b
− |k‖| − kF

)
+

[
R1(kF − |k‖|, ω)

+ 2R1

(
π

b
, ω

)
− R1

(
2π

b
− kF − |k‖|, ω

)]

× �

(
kF + |k‖| − π

b

)
, (20)

with

R1(x, ω) =⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−2x ln |x | + x ln

∣∣∣∣x
2 + Q2

⊥
(ω − E0(k‖))2 − ω2

pl

(ω − E0(k‖))2 − �2
pl

∣∣∣∣

+ F(x, ω), x �= 0,

0, x = 0

(21)

and

F(x, ω) =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Q⊥

√√√√ (ω − E0(k‖))2 − ω2
pl

(ω − E0(k‖))2 − �2
pl

arctan
x

Q⊥
√

(ω−E0(k‖))2−ω2
pl

(ω−E0(k‖))2−�2
pl

for |ω − E0(k‖)| < ωpl, �pl < |ω − E0(k‖)|,

Q⊥

√√√√ (ω − E0(k‖))2 − ω2
pl

�2
pl − (ω − E0(k‖))2

ln

∣∣∣∣∣∣∣∣

x + Q⊥
√

(ω−E0(k‖))2−ω2
pl)

�2
pl−(ω−E0(k‖))2

x − Q⊥
√

(ω−E0(k‖))2−ω2
pl

�2
pl−(ω−E0(k‖))2

∣∣∣∣∣∣∣∣

for ωpl < |ω − E0(k‖)| < �pl.

(22)
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Figure 2. Frequency dependence of Re G−1(k‖, ω)/t0 (full lines) and − Im G−1(k‖, ω)/t0 (dashed lines) for kF = π/2b and k‖ = 0 (a),
k‖ = kF (b), and k‖ = 2kF (c).

The exchange energy in the expression (19) is given by

Eex(k‖) = − e2

2π

{
[H (kF − |k‖|) + H (kF + |k‖|)]

× �

(
π

b
− |k‖| − kF

)
+

[
H (kF − |k‖|) + 2H

(
π

b

)

− H

(
2π

b
− kF − |k‖|

)]
�

(
kF + |k‖| − π

b

)}
(23)

with

H (x) ≡ x ln(Q2
⊥ + x2) + 2Q⊥ arctan

x

Q⊥
− x ln x2. (24)

Further simplification follows upon realizing that in the regime
of strong Coulomb interaction the self-energy contribution
is dominant in comparison to the transverse dispersion term
2t⊥(cos kxa + cos kzc) in E(k). Consequently, we can skip
the dependence of Re G−1(k, ω) on kx and kz as irrelevant for
further considerations. Namely, after taking into account that
Q⊥ = 2

√
π/

√
ac � π/b, the leading contribution to the third

term on the right-hand side in equation (19) reduces to e2

2 Q⊥ ≈
0.16 ωpl�pl

t⊥
� t⊥. This justifies the above approximation,

after which we can proceed to a great extent along the lines
of [6]. In particular, the chemical potential μ in equation (19)
is now, after taking into account the self-consistent condition
Re G−1(kF, μ) = 0, given by

μ = − e2

2b

{
ln

[(
bQ⊥
π

)2

+ 1

]
+ 2bQ⊥

π
arctan

π

bQ⊥

}
. (25)

The imaginary part of the reciprocal Green’s function is given
by

Im G−1(k‖, ω) = e2

2

(ω − μ − E0(k‖))2

(ω − μ − E0(k‖))2 − ω2
pl

×
{

2qc�(ω − μ − E0(k‖)) − [�(−ω + μ + E0(k‖))

+ �(ω − μ − E0(k‖))] ×
[

2qc�(kF − |k‖| − qc)

+ 2kF�(qc − |k‖| − kF) + (kF − |k‖| + qc)

× �(|k‖| + qc − kF)�(kF − ||k‖| − qc|)

× �

(
2π

b
− kF − |k‖| − qc

)
+

(
2kF + 2qc − 2π

b

)

× �(kF − ||k‖| − qc|)�
(
−2π

b
+ kF + |k‖| + qc

)]}

(26)

for ωpl < |ω − μ − E0(k‖)| < �pl, and Im G−1(k‖, ω) = 0
elsewhere. The wavenumber qc in equation (26) is defined by

qc = min

⎛

⎝Q⊥

√√√√ (ω − μ − E0(k‖))2 − ω2
pl

�2
pl − (ω − μ − E0(k‖))2

,
π

b

⎞

⎠ . (27)

Re G−1(k‖, ω) and Im G−1(k‖, ω) are shown in figure 2
for three representative values of k‖, namely for k‖ equal
to 0, kF, and 2kF. Let us at first look more closely into
Im G−1(k‖, ω). The vanishing of Im G−1(k‖, ω) in the ranges
|ω − μ − E0(k‖)| < ωpl and |ω − μ − E0(k‖)| > �pl can
be traced already from the expression (17) after approximating
E(k + q) ≈ E0(k‖). Namely, in these ranges there are
no poles of the reciprocal Green’s function contributing to
Im G−1(k‖, ω).

Im G−1(k‖, ω) vanishes also in the range μ + ωpl +
E0(k‖) < ω < μ + ω(k‖ − kF, Q⊥) + E0(k‖) for k‖ < kF,
as well as in the range μ − ω(k‖ − kF, Q⊥) + E0(k‖) < ω <

μ − ωpl + E0(k‖) for k‖ > kF. This vanishing can also be
traced from the expression (17). Namely, due to the presence
of the occupation function n(k + q) in the q-summation the
non-vanishing contributions from dense discrete poles at ω =
μ−ω(q)+ E0(k‖)+ iη contribute only in the range μ−�pl +
E0(k‖) < ω < μ − ω(k‖ − kF, Q⊥) + E0(k‖), while the non-
vanishing contributions from poles at ω = μ+ω(q)+E0(k‖)−
iη contribute only in the range μ+ω(k‖ −kF, Q⊥)+ E0(k‖) <

ω < μ + �pl + E0(k‖).
In the range ωpl < |ω−μ−E0(k‖)| < �pl, Im G−1(k‖, ω)

is covered by the expression (26). It has a step singularity of

the width
e2kF�2

pl

�2
pl−ω2

pl
at ω = μ ± �pl + E0(k‖) and diverges at the

energies ω = μ−ωpl + E0(k‖) for k‖ � kF and ω = μ+ωpl +
E0(k‖) for k‖ � kF. At energies ω1,2 = μ ∓ ω(π/b, Q⊥) +
E0(k‖), Im G−1(k‖, ω) has the respective anomalous minimum
and maximum, with jumps in the first derivatives. These
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extrema originate from the confinement of the q-summation in
the expression (17) to the first Brillouin zone. The integration
in terms of q⊥ from 0 to Q⊥ results in the limitation on the

q‖-integration to the range |q‖| < Q⊥
√

(ω−μ−E0(k‖))2−ω2
pl

�2
pl−(ω−μ−E0(k‖))2 as

long as this limit is within the first Brillouin zone. However,
for values of ω in the ranges μ − �pl + E0(k‖) < ω <

μ − ω(π/b, Q⊥) + E0(k‖) and μ + ω(π/b, Q⊥) + E0(k‖) <

ω < μ+�pl + E0(k‖) we have π
b < Q⊥

√
(ω−μ−E0(k‖))2−ω2

pl

�2
pl−(ω−μ−E0(k‖))2 , so

the q‖-integration is limited to the first Brillouin zone, i.e. by
the ω-independent boundary qc = π

b . The resulting values of
Im G−1(k‖, ω) at the anomalous minimum and maximum are

∓e2kF
(ω1,2−μ−E0(k‖))2

(ω1,2−μ−E0(k‖))2−ω2
pl

.

Let us now consider Re G−1(k‖, ω). As is seen from
figure 2, it diverges towards ±∞ at the respective energies
ω = μ ∓ �pl + E0(k‖) at which Im G−1(k‖, ω) has step
singularities. These singularities are shifted towards larger
values of ω as k‖ increases. The zeros of Re G−1(k‖, ω) at ω <

μ−�pl + E0(k‖) and ω > μ+�pl + E0(k‖) are also shifted to
the right as k‖ increases, the former approaching the singularity
at ω = μ − �pl + E0(k‖) and the latter increasing the distance
from the singularity at ω = μ + �pl + E0(k‖). Re G−1(k‖, ω)

also has essential singularities at ω = μ − ωpl + E0(k‖) (for
k‖ � kF) and ω = μ + ωpl + E0(k‖) (for k‖ � kF), i.e. at
energies at which Im G−1(k‖, ω) diverges.

The zero of Re G−1(k‖, ω) in the range μ−ωpl+E0(k‖) <

ω < μ + ωpl + E0(k‖) in which Im G−1(k‖, ω) vanishes
is the low energy pole of the electron propagator G(k‖, ω).
It is of the form y(k‖) = Ẽ(k‖) − i(k‖), where (k‖) is
infinitesimally small in the present approach. Accordingly, our
Green’s function has in this range the standard resonant form

G(k‖, ω) = Z(k‖)
ω − y(k‖)

, (28)

where Z(k‖) = |∂ Re G−1(k‖, y(k‖))/∂ω|−1 is the residuum
of the Green function at the pole y(k‖). We emphasize that the
low energy pole appears due to the optical gap ωpl in the long-
wavelength plasmon dispersion introduced by the finite inter-
chain transfer integral t⊥ in the electron dispersion. This is
illustrated by the analytical expression for the residuum Z(k‖)
at k‖ = kF in the limit ωpl � �pl,

ZF = 1

/[
1 + e2

π

Q⊥
�pl

ln

(
4�pl

ωpl

)]

= 1

/[
1 + e2

π

Q⊥
�pl

ln

(
�pl

√
vF

et⊥

)]
. (29)

The dependences of ZF on t⊥ obtained numerically as well
as with the use of the expression (29) are shown in figure 3.
The Green’s function has the standard resonant form (28) also
in the frequency range |ω − μ − E0(k‖)| > �pl in which
Re G−1(k‖, ω) has zeros and Im G−1(k‖, ω) vanishes.

On the other hand the structure of the Green’s function
in the region ωpl < |ω − μ − E0(k‖)| < �pl in which
Im G−1(k‖, ω) �= 0 is influenced by the plasmon dispersion
contribution to the expression (17).

Figure 3. ZF obtained numerically (full curve) and from the
expression (29) (dashed curve).

3. Spectral function

The single-particle spectral function is defined by

A(k‖, ω) = 1

π
|Im G(k‖, ω)|. (30)

It can be directly expressed in terms of Re G−1(k‖, ω) and
Im G−1(k‖, ω),

A(k‖, ω) = 1

π

|Im G−1(k‖, ω)|
[Re G−1(k‖, ω)]2 + [Im G−1(k‖, ω)]2

, (31)

except for the case of Re G−1(k‖, ω) having a zero y(k‖) in
the frequency range in which Im G−1(k‖, ω) = 0, when it is
represented by the quasi-particle δ-peak

A(k‖, ω) = Z(k‖)δ(ω − y(k‖)). (32)

The spectral function A(k‖, ω), obtained after inserting
expressions (19) and (26) into equations (31) and (32), is
shown in figure 4 for two values of the transverse plasmon
frequency, ωpl = 0.26 and 0.63 eV. Generally it is
characterized by the coexistence of wide humps and quasi-
particle δ-peaks. Humps originate from the plasmon dispersion
in the range ωpl < |ω − μ − E0(k‖)| < �pl. Their positions
vary slowly with the wavenumber k‖. As for the δ-peaks, they
are situated in the energy ranges μ + E0(k‖) − ωpl < ω <

μ+ E0(k‖)+ωpl and |ω−μ− E0(k‖)| > �pl. It is to be noted
that δ-peaks are present for any finite t⊥. However, the decrease
of t⊥ leads to the decrease of the weight of the quasi-particle
δ-peak in the range μ+ E0(k‖)−ωpl < ω < μ+ E0(k‖)+ωpl

in favor of the growing weight of the hump. In the limit
t⊥ → 0, i.e. ωpl → 0, these quasi-particles disappear and
all their spectral weight transfers to the hump. The vanishing
of the quasi-particle weight in the range μ + E0(k‖) − ωpl <

ω < μ + E0(k‖) + ωpl as t⊥ → 0 is visible in the dependence
of Z(k‖) on t⊥ for k‖ = kF as shown by equation (29) and in
figure 3. We thus come to the spectral function for t⊥ = 0
which has no low energy quasi-particle. In other words, the
crossover from the t⊥ �= 0 Fermi liquid regime to the t⊥ = 0

6
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Figure 4. Spectral function A(k‖, ω) for small (ωpl = 0.26 eV) (a) and large (ωpl = 0.63 eV) (b) values of the transverse plasmon frequency
ωpl in the case kF = π/2b. Broad maxima for different values of the wavenumber k‖ follow from equation (31), while δ-peaks are represented
by their weight Z(k‖) according to equation (32).

non-Fermi liquid regime takes place through the decrease of
the quasi-particle weight by closing the optical gap in the long-
wavelength plasmon mode.

We note that the numerically obtained spectral function
shown in figure 4 fulfills excellently the sum rule

∫ ∞

−∞
A(k‖, ω) dω = 1, (33)

with the agreement up to 10−4 over the whole range of the
wavevector k‖, and for all values of t⊥ considered. Finally,
we notice that, in contrast to the quasi-particles in the range
μ + E0(k‖) − ωpl < ω < μ + E0(k‖) + ωpl, the quasi-
particles in the energy range |ω − μ − E0(k‖)| > �pl are not
critically sensitive to the plasmon optical gap ωpl and keep a
finite intensity in the limit t⊥ → 0 as was already shown in [6].

As was already mentioned in the introduction, the main
property of the above spectral function, namely the quasi-
particles at low energies coexisting with the wide structure
originating from the collective plasmon branch, resembles
the result obtained in the early investigation of the isotropic
‘jellium’ model within the G0W0 approach by Hedin and
Lundqvist [17–19]. They showed that due to the finite long-
wavelength minimum in the optical plasmon dispersion, �pl,
a quasi-particle with reduced weight appears in the region
μ − �pl < ω < μ + �pl, while the rest of the spectral weight
is widely distributed at energies outside this range.

As was already argued in [6], the non-Fermi liquid regime
for t⊥ = 0 is in the qualitative agreement with the ARPES
spectra of Bechgaard salts which apparently do not show low
energy quasi-particles [3–5]. On the other hand, the present
results for the spectral function of the quasi-one-dimensional
metal in the t⊥ �= 0 Fermi liquid regime suggest that in
(TMTSF)2PF6 (for which t⊥ = 0.0125 eV and t0 = 0.125 eV)
the quasi-particle δ-peak with the weight of the order of 20%
of the total spectral weight for a given value of k‖ is expected
in the low energy range, at an energy distance of the order of
ωpl = 0.13 eV from the lower edge of the wide hump. A more

directed experimental search, supported by improved energy
and intensity resolutions, is very probably necessary for finding
peaks with such weak intensities.

Finally, we refer to the work [26] devoted to the quasi-
two-dimensional metals with the finite transverse transfer
integral t⊥ between metallic planes, with the main result
analogous to ours. Namely the spectral function in this
case also consists of the suppressed quasi-particle peak and a
broad feature. Again, the RPA screened Coulomb interaction
gives a strongly anisotropic plasmon branch dispersion of the
form (15) containing a small transverse plasmon frequency
compared with the longitudinal one. This result is in agreement
with the ARPES spectra of quasi-two-dimensional high-Tc

superconductors in the normal conducting phase [27].

4. The density of states and momentum distribution
function

Integrating numerically the spectral density A(k‖, ω) in terms
of k‖, we get the density of states for band electrons,

n(ω) = 1

2kF

∫ π
b

0
A(k‖, ω) dk‖, (34)

shown in figure 5 for two values of the inter-chain transfer
integral, t⊥ = 0.025 and 0.06 eV. Three distinctive
step singularities in n(ω) originate from the edges of the
corresponding quasi-particle δ-peak dispersions. In particular,
the density of states falls from a maximum at the lowest energy
of the k‖ dependent quasi-particle δ-peak in the range ω <

μ + E0(k‖) − �pl to a local minimum. Then it rises until the
step discontinuity at the highest energy of the quasi-particle δ-
peak in the energy range ω < μ + E0(k‖) − �pl is reached.
Further on, n(ω) varies slowly from this discontinuity until the
next one at the lowest energy of the quasi-particle δ-peak in
the energy range μ + E0(k‖) − ωpl < ω < μ + E0(k‖) + ωpl

is reached, accumulating the contribution from the spectral
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Figure 5. Density of states n(ω) for t⊥ equal 0.025 eV (a) and 0.06 eV (b).

Figure 6. Momentum distribution function for kF = π

2b and t⊥ equal 0.025 eV (a) and 0.06 eV (b) showing the discontinuity at kF.

density hump in this range. Increasing further the energy above
the third step discontinuity, one comes to the minimum of n(ω)

at ω = μ, the latter bearing the contribution from the quasi-
particle at the chemical potential in the spectral function.

The momentum distribution function

n(k‖) =
∫ μ

−∞
A(k‖, ω) dω (35)

is also calculated numerically, and shown in figure 6 for t⊥ =
0.025 eV (a) and 0.06 eV (b). The deviation of areas below the
curves (a) and (b) from the exact number of particles is smaller
than 0.1%, indicating the highly satisfactory self-consistency
of the G0W0 approximation. The momentum distribution
has the qualitative behavior of the dressed Fermi liquid. It
decreases from the maximal value at k‖ = 0 towards the step
discontinuity at the Fermi wavenumber k‖ = kF. The height of
this discontinuity is equal to the spectral weight Z(kF) of the
quasi-particle δ-peak at ω = μ. Figure 6 again shows that this
height decreases as t⊥ decreases.

5. Conclusion

The aim of the present analysis is twofold.
Firstly, we investigate the crossover from the specific

spectral function of the one-dimensional conducting band to
that of standard isotropic three-dimensional Fermi liquid. We
show that the absence of quasi-particle peaks is limited to
the band with the strictly one-dimensional flat Fermi surface.
Quasi-particle peaks appear immediately upon introducing a
finite corrugation of the Fermi surface, measured by finite t⊥ in
our approach. The spectral weight of these δ-peaks for k‖ = kF

is given by the expression (29) and shown in figure 3. It
has a non-power-law dependence on the transverse bandwidth
[Z ∼ −(ln t⊥)−1] in the limit t⊥ → 0. The rest of the
spectral weight is carried by the wide feature in the energy
range characterized by the plasmon energy �pl. As is shown
in section 2, this result is to a great extent obtained analytically
after a few technical simplifications which are well justified in
the limit t⊥ � t0,�pl.

8
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Although, due to this limitation, our method of calculation
cannot be extended towards the pure three-dimensional regime
(t⊥ ≈ t0), the plausible expectation is that the quasi-
particle spectral weight will increase continuously as t⊥ further
increases, approaching the three-dimensional regime with
quantitative properties obtained a long time ago by Hedin
and Lundquist [17–19]. It is worthwhile to stress again that,
as the above Z versus t⊥ dependence illustrates, the present
calculations, unlike some others (e.g. [20, 21]), are not simple
power-law expansions in terms of t⊥, and in this respect
are complementary to the higher dimensional bosonization
approach developed in [13, 14]. The essential reason for the
inadequacy of the perturbation approach in terms of t⊥, even
in the limit t⊥ → 0, is to be recognized in a qualitative change
of the plasmon spectrum, namely in the opening of the gap
in its long-wavelength limit. This gap in turn enables the
appearance of quasi-particles in A(k, ω) already within the
G0W0 approximation. A word of warning here concerns the
applicability of the G0W0 approximation itself. Strictly, it is
limited to the range of weakly screened Coulomb interaction,
the relevant criterion being �pl < t0. In some of illustrations
presented here we allow values of �pl above this range,
anticipating that no qualitatively new situation arises in the
intermediate range �pl ≈ t0. This range, as well as the range
of strong long-range Coulomb interaction (even after the RPA
screening is taken into account), however, still awaits a better
understanding.

The present analysis can also provide some estimations on
the possible observability of simultaneous appearance of quasi-
particles and wide humps in experiments measuring spectral
properties. The energy resolution in reported photoemission
measurements on Bechgaard salts varied between 10 and
30 meV [3–5]. Additional complication comes from
indications that surface effects could have affected low energy
parts of existing ARPES data [28]. Thus in order to observe
a dispersing sharp low energy quasi-particle with the narrow
width ranging up to 10 meV, it will be necessary to have an
increased energy resolution at low energies and an enhanced
bulk sensitivity of the ARPES spectra. We believe that such
demands are achievable, particularly because our estimations
suggest that the spectral weights of quasi-particle peaks are
expected to range up to 20% of the total spectral weight, and to
be positioned at binding energies ranging up to energies of the
order of 250 meV, appearing in coexistence with characteristic
wide humps already observed at higher energies.

Among quasi-one-dimensional materials investigated
in photoemission measurements the acceptor–donor chain
compound TTF-TCNQ appears to be a particularly interesting
example [1, 2]. There are various indications, e.g. the infrared
optical measurements [29–31], that it has a soft longitudinal
mode at 10 meV in the metallic phase. This mode was
explained theoretically within the model of the quasi-one-
dimensional metal with two bands per donor and acceptor
chains and the three-dimensional RPA screened electron–
electron interaction [32]. It was shown that the appearance
of such a mode in the low energy range is due to the strong
coupling between the plasmon and the collective inter-band
dipolar mode. As for the ARPES spectra, they show the

absence of low energy quasi-particles and the one-dimensional
dispersion of electron bands [1, 2]. However the bandwidth
values from these data are two to four times larger than
the values obtained by earlier theoretical and experimental
estimations [33]. This signals that it is necessary to include
electron–electron interactions in order to improve quantitative
interpretation of the data. More precisely, it remains to
investigate the influence of the elsewhere observed low energy
mode on the low energy spectral properties of the quasi-
one-dimensional metal with one electron band per donor and
acceptor chains within the G0W0 approximation, but with the
RPA screened Coulomb electron–electron interaction obtained
for the model with two bands per chain [32]. Taking into
account the results that we obtained in [6] and in the present
work, we expect this low energy mode to also be responsible
for the low energy spectral properties of TTF-TCNQ. The full
analysis of this question is under way.
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[28] Sing M et al 2003 Phys. Rev. B 67 125402
[29] Tanner D B et al 1976 Phys. Rev. B 13 3381
[30] Jacobsen C S 1979 Lecture Notes in Physics vol 95,
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